krill - translation to γαλλικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

krill - translation to γαλλικά

ORDER OF CRUSTACEANS
Euphausids; Euphausid; Euphausiids; Euphausiacea; Euphausiid; Euphausiidae; Euphausidae; Euphausiid shrimp; Euphausiid shrimps; Kril; Okiami; Euphasiacea
  • fermented]] krill, used to make ''[[Bagoong alamang]]'', a type of [[shrimp paste]] from the [[Philippines]]
  • 50px
  • 50px]] Material was copied from this source, which is available under a [https://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International License].</ref>
  • The [[gill]]s of krill are externally visible
  • A krill swarm
  • Krill anatomy explained, using ''[[Euphausia superba]]'' as a model
  • Deep frozen plates of [[Antarctic krill]] for use as animal feed and raw material for cooking
  • nauplius]] of ''[[Euphausia pacifica]]'' hatching, emerging backwards from the egg
  • mm}}
  • Beating [[pleopod]]s of a swimming [[Antarctic krill]]
  • '''Processes in the biological pump'''}} Phytoplankton convert CO2, which has dissolved from the atmosphere into the surface oceans (90 Gt yr−1) into particulate organic carbon (POC) during primary production (~ 50 Gt C yr−1). Phytoplankton are then consumed by krill and small zooplankton grazers, which in turn are preyed upon by higher trophic levels. Any unconsumed phytoplankton form aggregates, and along with zooplankton faecal pellets, sink rapidly and are exported out of the mixed layer (< 12 Gt C yr−1 14). Krill, zooplankton and microbes intercept phytoplankton in the surface ocean and sinking detrital particles at depth, consuming and respiring this POC to CO2 (dissolved inorganic carbon, DIC), such that only a small proportion of surface-produced carbon sinks to the deep ocean (i.e., depths > 1000 m). As krill and smaller zooplankton feed, they also physically fragment particles into small, slower- or non-sinking pieces (via sloppy feeding, coprorhexy if fragmenting faeces), retarding POC export. This releases dissolved organic carbon (DOC) either directly from cells or indirectly via bacterial solubilisation (yellow circle around DOC). Bacteria can then remineralise the DOC to DIC (CO2, microbial gardening). Diel vertically migrating krill, smaller zooplankton and fish can actively transport carbon to depth by consuming POC in the surface layer at night, and metabolising it at their daytime, mesopelagic residence depths. Depending on species life history, active transport may occur on a seasonal basis as well. Numbers given are carbon fluxes (Gt C yr−1) in white boxes and carbon masses (Gt C) in dark boxes.<ref name=Cavan2019 />
  • '''Role of Antarctic krill in biogeochemical cycles'''}} Krill (as swarms and individuals) feed on phytoplankton at the surface (1) leaving only a proportion to sink as phytodetrital aggregates (2), which are broken up easily and may not sink below the permanent thermocline. Krill also release faecal pellets (3) whilst they feed, which can sink to the deep sea but can be consumed (coprophagy) and degraded as they descend (4) by krill, bacteria and zooplankton. In the marginal ice zone, faecal pellet flux can reach greater depths (5). Krill also release moults, which sink and contribute to the carbon flux (6). Nutrients are released by krill during sloppy feeding, excretion and egestion, such as iron and ammonium (7, see Fig. 2 for other nutrients released), and if they are released near the surface can stimulate phytoplankton production and further atmospheric CO2 drawdown. Some adult krill permanently reside deeper in the water column, consuming organic material at depth (8). Any carbon (as organic matter or as CO2) that sinks below the permanent thermocline is removed from subjection to seasonal mixing and will remain stored in the deep ocean for at least a year (9). The swimming motions of migrating adult krill that migrate can mix nutrient-rich water from the deep (10), further stimulating primary production. Other adult krill forage on the seafloor, releasing respired CO2 at depth and may be consumed by demersal predators (11). Larval krill, which in the Southern Ocean reside under the sea ice, undergo extensive diurnal vertical migration (12), potentially transferring CO2 below the permanent thermocline. Krill are consumed by many predators including baleen whales (13), leading to storage of some of the krill carbon as biomass for decades before the whale dies, sinks to the seafloor and is consumed by deep sea organisms.<ref name=Cavan2019 />

krill      
n. krill, small sea animal that resembles a shrimp

Ορισμός

krill
¦ plural noun small shrimp-like planktonic crustaceans which are the principal food of baleen whales. [Meganyctiphanes norvegica and other species, order Euphausiacea.]
Origin
early 20th cent.: from Norw. kril 'small fish fry'.

Βικιπαίδεια

Krill

Krill are small crustaceans of the order Euphausiacea, and are found in all the world's oceans. The name "krill" comes from the Norwegian word krill, meaning "small fry of fish", which is also often attributed to species of fish.

Krill are considered an important trophic level connection – near the bottom of the food chain. They feed on phytoplankton and (to a lesser extent) zooplankton, yet also are the main source of food for many larger animals. In the Southern Ocean, one species, the Antarctic krill, Euphausia superba, makes up an estimated biomass of around 379,000,000 tonnes, making it among the species with the largest total biomass. Over half of this biomass is eaten by whales, seals, penguins, seabirds, squid, and fish each year. Most krill species display large daily vertical migrations, thus providing food for predators near the surface at night and in deeper waters during the day.

Krill are fished commercially in the Southern Ocean and in the waters around Japan. The total global harvest amounts to 150,000–200,000 tonnes annually, most of this from the Scotia Sea. Most of the krill catch is used for aquaculture and aquarium feeds, as bait in sport fishing, or in the pharmaceutical industry. In Japan, the Philippines, and Russia, krill are also used for human consumption and are known as okiami (オキアミ) in Japan. They are eaten as camarones in Spain and Philippines. In the Philippines, krill are also known as alamang and are used to make a salty paste called bagoóng.

Krill are also the main prey of baleen whales, including the blue whale.

Παραδείγματα από το σώμα κειμένου για krill
1. ECLAIRAGES Le Temps I Article La pisciculture menace «l‘or rose» Virginia Gascón González et Rodolfo Werner Kinkelin, de l‘Antarctic Krill Conservation Project, affirment que la pęche intensive au krill menace les esp';ces marines qui s‘en nourrissent.
2. J‘entends męme des personnes, toutes apitoyées, se réjouir du réchauffement climatique, alors que si la banquise fond, le krill, ce crustacé dont le manchot se nourrit va disparaître.
3. Devant se repaître de krill – minuscule crustacé qui pullule en Antarctique – pour nourrir leur progéniture, ces manchots s‘aventurent dans les eaux glacées entourant leur île.
4. Il conclut que la surface de la banquise s‘y est réduite de 40% par rapport ŕ 1'81, entraînant une diminution du krill, principale source de nourriture pour les manchots ŕ jugulaire.
5. Or l‘on sait que le krill est tr';s sensible ŕ d‘infimes variations de température...» Rory Wilson, biologiste spécialiste du suivi des manchots ŕ l‘Université de Swansea (pays de Galles), souligne: «Cette étude est tr';s intéressante.